How to Solve Walking Robot Simulation Problem
Master the Walking Robot Simulation LeetCode problem with undetectable real-time assistance. Get instant solutions and explanations during your coding interviews.
Interview Coder generates complete solutions and debugging hints that you can use while explaining your approach, so you stay calm and in control.
Walking Robot Simulation
A robot on an infinite XY-plane starts at point (0, 0) facing north. The robot receives an array of integers commands, which represents a sequence of moves that it needs to execute. There are only thr...
Interview Coder will help you solve this problem in real-time during your interview
✨ Get instant solutions, explanations, and code generation
Understanding the Walking Robot Simulation Problem
Let's break down this LeetCode problem and understand what makes it challenging in interview settings.
Problem Statement
A robot on an infinite XY-plane starts at point (0, 0) facing north. The robot receives an array of integers commands, which represents a sequence of moves that it needs to execute. There are only three possible types of instructions the robot can receive: -2: Turn left 90 degrees. -1: Turn right 90 degrees. 1 <= k <= 9: Move forward k units, one unit at a time. Some of the grid squares are obstacles. The ith obstacle is at grid point obstacles[i] = (xi, yi). If the robot runs into an obstacle, it will stay in its current location (on the block adjacent to the obstacle) and move onto the next command. Return the maximum squared Euclidean distance that the robot reaches at any point in its path (i.e. if the distance is 5, return 25). Note: There can be an obstacle at (0, 0). If this happens, the robot will ignore the obstacle until it has moved off the origin. However, it will be unable to return to (0, 0) due to the obstacle. North means +Y direction. East means +X direction. South means -Y direction. West means -X direction.
Walking Robot Simulation
Related Topics
How Interview Coder Helps
Get real-time assistance for Walking Robot Simulation problems during coding interviews. Interview Coder provides instant solutions and explanations.
Examples
commands = [4,-1,3], obstacles = []
25
The robot starts at (0, 0): Move north 4 units to (0, 4). Turn right. Move east 3 units to (3, 4). The furthest point the robot ever gets from the origin is (3, 4), which squared is 32 + 42 = 25 units away.
commands = [4,-1,4,-2,4], obstacles = [[2,4]]
65
The robot starts at (0, 0): Move north 4 units to (0, 4). Turn right. Move east 1 unit and get blocked by the obstacle at (2, 4), robot is at (1, 4). Turn left. Move north 4 units to (1, 8). The furthest point the robot ever gets from the origin is (1, 8), which squared is 12 + 82 = 65 units away.
commands = [6,-1,-1,6], obstacles = [[0,0]]
36
The robot starts at (0, 0): Move north 6 units to (0, 6). Turn right. Turn right. Move south 5 units and get blocked by the obstacle at (0,0), robot is at (0, 1). The furthest point the robot ever get
Constraints
How Interview Coder Helps with Leetcode Problems
Trust anchors reduce friction for conversion. Reinforce undetectability claims, platform compatibility, user counts, and the free trial to remove perceived risk.
See Interview Coder in Action
Watch how Interview Coder helps solve LeetCode problems during live interviews
Undetectability Checklist
Platform Compatibility
User results and traction
More than 87,000 developers use Interview Coder and early launch metrics showed rapid adoption. Social proof signals that this approach helps real candidates land offers across a range of companies.
Undetectability and technical details
Our native desktop architecture avoids common detection vectors used by browser extensions. We provide a clear checklist so you can run basic checks and confirm the app will be invisible during live interviews.
Platform compatibility and limitations
We work with Zoom, HackerRank, CodeSignal, CoderPad and other web based platforms, with a known list of app version caveats. Check the compatibility note and request a browser link if a specific desktop app is unsupported.
Frequently Asked Questions
Common questions about solving Walking Robot Simulation and using Interview Coder during coding interviews.
Interview Coder generates complete solutions instantly with proper complexity analysis, letting you focus on explaining your approach and demonstrating problem-solving skills rather than getting stuck on implementation details during high-pressure situations.
Ready to Get Started?
Download Interview Coder now and join thousands of developers who have aced their coding interviews