How to Solve Walking Robot Simulation Leetcode Problem - Interview Coder Guide
Get Monthly InterviewCoder for $99 $25!
First 100 customers only
24
:
00
:
00
Used by 87,000+ developers who passed their interviews

How to Solve Walking Robot Simulation Problem

Master the Walking Robot Simulation LeetCode problem with undetectable real-time assistance. Get instant solutions and explanations during your coding interviews.

Interview Coder generates complete solutions and debugging hints that you can use while explaining your approach, so you stay calm and in control.

undetectable
real-time
works on major platforms
Medium#906
LeetCode Problem

Walking Robot Simulation

A robot on an infinite XY-plane starts at point (0, 0) facing north. The robot receives an array of integers commands, which represents a sequence of moves that it needs to execute. There are only thr...

ArrayHash TableSimulation

Interview Coder will help you solve this problem in real-time during your interview

✨ Get instant solutions, explanations, and code generation

Problem Breakdown

Understanding the Walking Robot Simulation Problem

Let's break down this LeetCode problem and understand what makes it challenging in interview settings.

Problem Statement

A robot on an infinite XY-plane starts at point (0, 0) facing north. The robot receives an array of integers commands, which represents a sequence of moves that it needs to execute. There are only three possible types of instructions the robot can receive: -2: Turn left 90 degrees. -1: Turn right 90 degrees. 1 <= k <= 9: Move forward k units, one unit at a time. Some of the grid squares are obstacles. The ith obstacle is at grid point obstacles[i] = (xi, yi). If the robot runs into an obstacle, it will stay in its current location (on the block adjacent to the obstacle) and move onto the next command. Return the maximum squared Euclidean distance that the robot reaches at any point in its path (i.e. if the distance is 5, return 25). Note: There can be an obstacle at (0, 0). If this happens, the robot will ignore the obstacle until it has moved off the origin. However, it will be unable to return to (0, 0) due to the obstacle. North means +Y direction. East means +X direction. South means -Y direction. West means -X direction.

MediumProblem #906
LeetCode

Walking Robot Simulation

Related Topics
ArrayHash TableSimulation
How Interview Coder Helps

Get real-time assistance for Walking Robot Simulation problems during coding interviews. Interview Coder provides instant solutions and explanations.

Examples

Example 1
INPUT
commands = [4,-1,3], obstacles = []
OUTPUT
25
EXPLANATION

The robot starts at (0, 0): Move north 4 units to (0, 4). Turn right. Move east 3 units to (3, 4). The furthest point the robot ever gets from the origin is (3, 4), which squared is 32 + 42 = 25 units away.

Example 2
INPUT
commands = [4,-1,4,-2,4], obstacles = [[2,4]]
OUTPUT
65
EXPLANATION

The robot starts at (0, 0): Move north 4 units to (0, 4). Turn right. Move east 1 unit and get blocked by the obstacle at (2, 4), robot is at (1, 4). Turn left. Move north 4 units to (1, 8). The furthest point the robot ever gets from the origin is (1, 8), which squared is 12 + 82 = 65 units away.

Example 3
INPUT
commands = [6,-1,-1,6], obstacles = [[0,0]]
OUTPUT
36
EXPLANATION

The robot starts at (0, 0): Move north 6 units to (0, 6). Turn right. Turn right. Move south 5 units and get blocked by the obstacle at (0,0), robot is at (0, 1). The furthest point the robot ever get

Constraints

How Interview Coder Helps with Leetcode Problems

Trust anchors reduce friction for conversion. Reinforce undetectability claims, platform compatibility, user counts, and the free trial to remove perceived risk.

87,000+
developers use Interview Coder
and early launch metrics showed rapid adoption
95%
success rate
of users pass their interviews
100%
undetectable
native desktop architecture
Real-time
assistance
instant solutions during interviews

See Interview Coder in Action

Watch how Interview Coder helps solve LeetCode problems during live interviews

Play

Undetectability Checklist

Run compatibility test before interviews
Use recommended Zoom version settings
Enable advanced screen capture options
Verify native desktop architecture
Test with screen recording software

Platform Compatibility

Zoom
Supported
Google Meet
Supported
HackerRank
Supported
CodeSignal
Supported
CoderPad
Supported
Teams
Supported

User results and traction

More than 87,000 developers use Interview Coder and early launch metrics showed rapid adoption. Social proof signals that this approach helps real candidates land offers across a range of companies.

Undetectability and technical details

Our native desktop architecture avoids common detection vectors used by browser extensions. We provide a clear checklist so you can run basic checks and confirm the app will be invisible during live interviews.

Platform compatibility and limitations

We work with Zoom, HackerRank, CodeSignal, CoderPad and other web based platforms, with a known list of app version caveats. Check the compatibility note and request a browser link if a specific desktop app is unsupported.

Frequently Asked Questions

Common questions about solving Walking Robot Simulation and using Interview Coder during coding interviews.

Interview Coder generates complete solutions instantly with proper complexity analysis, letting you focus on explaining your approach and demonstrating problem-solving skills rather than getting stuck on implementation details during high-pressure situations.

Interview Coder - AI Interview Assistant Logo

Ready to Get Started?

Download Interview Coder now and join thousands of developers who have aced their coding interviews