How to Solve Best Position for a Service Centre Problem
Master the Best Position for a Service Centre LeetCode problem with undetectable real-time assistance. Get instant solutions and explanations during your coding interviews.
Interview Coder generates complete solutions and debugging hints that you can use while explaining your approach, so you stay calm and in control.
Best Position for a Service Centre
A delivery company wants to build a new service center in a new city. The company knows the positions of all the customers in this city on a 2D-Map and wants to build the new center in a position such...
Interview Coder will help you solve this problem in real-time during your interview
✨ Get instant solutions, explanations, and code generation
Understanding the Best Position for a Service Centre Problem
Let's break down this LeetCode problem and understand what makes it challenging in interview settings.
Problem Statement
A delivery company wants to build a new service center in a new city. The company knows the positions of all the customers in this city on a 2D-Map and wants to build the new center in a position such that the sum of the euclidean distances to all customers is minimum. Given an array positions where positions[i] = [xi, yi] is the position of the ith customer on the map, return the minimum sum of the euclidean distances to all customers. In other words, you need to choose the position of the service center [xcentre, ycentre] such that the following formula is minimized: Answers within 10-5 of the actual value will be accepted.
Best Position for a Service Centre
Related Topics
How Interview Coder Helps
Get real-time assistance for Best Position for a Service Centre problems during coding interviews. Interview Coder provides instant solutions and explanations.
Examples
positions = [[0,1],[1,0],[1,2],[2,1]]
4.00000
As shown, you can see that choosing [xcentre, ycentre] = [1, 1] will make the distance to each customer = 1, the sum of all distances is 4 which is the minimum possible we can achieve.
positions = [[1,1],[3,3]]
2.82843
The minimum possible sum of distances = sqrt(2) + sqrt(2) = 2.82843
Constraints
1 <= positions.length <= 50
positions[i].length == 2
0 <= xi, yi <= 100
How Interview Coder Helps with Leetcode Problems
Trust anchors reduce friction for conversion. Reinforce undetectability claims, platform compatibility, user counts, and the free trial to remove perceived risk.
See Interview Coder in Action
Watch how Interview Coder helps solve LeetCode problems during live interviews
Undetectability Checklist
Platform Compatibility
User results and traction
More than 87,000 developers use Interview Coder and early launch metrics showed rapid adoption. Social proof signals that this approach helps real candidates land offers across a range of companies.
Undetectability and technical details
Our native desktop architecture avoids common detection vectors used by browser extensions. We provide a clear checklist so you can run basic checks and confirm the app will be invisible during live interviews.
Platform compatibility and limitations
We work with Zoom, HackerRank, CodeSignal, CoderPad and other web based platforms, with a known list of app version caveats. Check the compatibility note and request a browser link if a specific desktop app is unsupported.
Frequently Asked Questions
Common questions about solving Best Position for a Service Centre and using Interview Coder during coding interviews.
Interview Coder generates complete solutions instantly with proper complexity analysis, letting you focus on explaining your approach and demonstrating problem-solving skills rather than getting stuck on implementation details during high-pressure situations.
Ready to Get Started?
Download Interview Coder now and join thousands of developers who have aced their coding interviews