How to Solve Flatten a Multilevel Doubly Linked List Problem
Master the Flatten a Multilevel Doubly Linked List LeetCode problem with undetectable real-time assistance. Get instant solutions and explanations during your coding interviews.
Interview Coder generates complete solutions and debugging hints that you can use while explaining your approach, so you stay calm and in control.
Flatten a Multilevel Doubly Linked List
You are given a doubly linked list, which contains nodes that have a next pointer, a previous pointer, and an additional child pointer. This child pointer may or may not point to a separate doubly lin...
Interview Coder will help you solve this problem in real-time during your interview
✨ Get instant solutions, explanations, and code generation
Understanding the Flatten a Multilevel Doubly Linked List Problem
Let's break down this LeetCode problem and understand what makes it challenging in interview settings.
Problem Statement
You are given a doubly linked list, which contains nodes that have a next pointer, a previous pointer, and an additional child pointer. This child pointer may or may not point to a separate doubly linked list, also containing these special nodes. These child lists may have one or more children of their own, and so on, to produce a multilevel data structure as shown in the example below. Given the head of the first level of the list, flatten the list so that all the nodes appear in a single-level, doubly linked list. Let curr be a node with a child list. The nodes in the child list should appear after curr and before curr.next in the flattened list. Return the head of the flattened list. The nodes in the list must have all of their child pointers set to null.
Flatten a Multilevel Doubly Linked List
Related Topics
How Interview Coder Helps
Get real-time assistance for Flatten a Multilevel Doubly Linked List problems during coding interviews. Interview Coder provides instant solutions and explanations.
Examples
head = [1,2,3,4,5,6,null,null,null,7,8,9,10,null,null,11,12]
[1,2,3,7,8,11,12,9,10,4,5,6]
The multilevel linked list in the input is shown. After flattening the multilevel linked list it becomes:
head = [1,2,null,3]
[1,3,2]
The multilevel linked list in the input is shown. After flattening the multilevel linked list it becomes:
head = []
[]
There could be empty list in the input.
Constraints
The number of Nodes will not exceed 1000.
1 <= Node.val <= 105
How the multilevel linked list is represented in test cases:
We use the multilevel linked list from Example 1 above:
1---2---3---4---5---6--NULL
|
7---8---9---10--NULL
|
11--12--NULL
The serialization of each level is as follows:
[1,2,3,4,5,6,null]
[7,8,9,10,null]
[11,12,null]
To serialize all levels together, we will add nulls in each level to signify no node connects to the upper node of the previous level. The serialization becomes:
[1, 2, 3, 4, 5, 6, null]
|
[null, null, 7, 8, 9, 10, null]
|
[ null, 11, 12, null]
Merging the serialization of each level and removing trailing nulls we obtain:
[1,2,3,4,5,6,null,null,null,7,8,9
How Interview Coder Helps with Leetcode Problems
Trust anchors reduce friction for conversion. Reinforce undetectability claims, platform compatibility, user counts, and the free trial to remove perceived risk.
See Interview Coder in Action
Watch how Interview Coder helps solve LeetCode problems during live interviews
Undetectability Checklist
Platform Compatibility
User results and traction
More than 87,000 developers use Interview Coder and early launch metrics showed rapid adoption. Social proof signals that this approach helps real candidates land offers across a range of companies.
Undetectability and technical details
Our native desktop architecture avoids common detection vectors used by browser extensions. We provide a clear checklist so you can run basic checks and confirm the app will be invisible during live interviews.
Platform compatibility and limitations
We work with Zoom, HackerRank, CodeSignal, CoderPad and other web based platforms, with a known list of app version caveats. Check the compatibility note and request a browser link if a specific desktop app is unsupported.
Frequently Asked Questions
Common questions about solving Flatten a Multilevel Doubly Linked List and using Interview Coder during coding interviews.
Interview Coder generates complete solutions instantly with proper complexity analysis, letting you focus on explaining your approach and demonstrating problem-solving skills rather than getting stuck on implementation details during high-pressure situations.
Ready to Get Started?
Download Interview Coder now and join thousands of developers who have aced their coding interviews