How to Solve Knight Probability in Chessboard Problem
Master the Knight Probability in Chessboard LeetCode problem with undetectable real-time assistance. Get instant solutions and explanations during your coding interviews.
Interview Coder generates complete solutions and debugging hints that you can use while explaining your approach, so you stay calm and in control.
Knight Probability in Chessboard
On an n x n chessboard, a knight starts at the cell (row, column) and attempts to make exactly k moves. The rows and columns are 0-indexed, so the top-left cell is (0, 0), and the bottom-right cell is...
Interview Coder will help you solve this problem in real-time during your interview
✨ Get instant solutions, explanations, and code generation
Understanding the Knight Probability in Chessboard Problem
Let's break down this LeetCode problem and understand what makes it challenging in interview settings.
Problem Statement
On an n x n chessboard, a knight starts at the cell (row, column) and attempts to make exactly k moves. The rows and columns are 0-indexed, so the top-left cell is (0, 0), and the bottom-right cell is (n - 1, n - 1). A chess knight has eight possible moves it can make, as illustrated below. Each move is two cells in a cardinal direction, then one cell in an orthogonal direction. Each time the knight is to move, it chooses one of eight possible moves uniformly at random (even if the piece would go off the chessboard) and moves there. The knight continues moving until it has made exactly k moves or has moved off the chessboard. Return the probability that the knight remains on the board after it has stopped moving.
Knight Probability in Chessboard
Related Topics
How Interview Coder Helps
Get real-time assistance for Knight Probability in Chessboard problems during coding interviews. Interview Coder provides instant solutions and explanations.
Examples
n = 3, k = 2, row = 0, column = 0
0.06250
There are two moves (to (1,2), (2,1)) that will keep the knight on the board. From each of those positions, there are also two moves that will keep the knight on the board. The total probability the knight stays on the board is 0.0625.
n = 1, k = 0, row = 0, column = 0
1.00000
Constraints
1 <= n <= 25
0 <= k <= 100
0 <= row, column <= n - 1
How Interview Coder Helps with Leetcode Problems
Trust anchors reduce friction for conversion. Reinforce undetectability claims, platform compatibility, user counts, and the free trial to remove perceived risk.
See Interview Coder in Action
Watch how Interview Coder helps solve LeetCode problems during live interviews
Undetectability Checklist
Platform Compatibility
User results and traction
More than 87,000 developers use Interview Coder and early launch metrics showed rapid adoption. Social proof signals that this approach helps real candidates land offers across a range of companies.
Undetectability and technical details
Our native desktop architecture avoids common detection vectors used by browser extensions. We provide a clear checklist so you can run basic checks and confirm the app will be invisible during live interviews.
Platform compatibility and limitations
We work with Zoom, HackerRank, CodeSignal, CoderPad and other web based platforms, with a known list of app version caveats. Check the compatibility note and request a browser link if a specific desktop app is unsupported.
Frequently Asked Questions
Common questions about solving Knight Probability in Chessboard and using Interview Coder during coding interviews.
Interview Coder generates complete solutions instantly with proper complexity analysis, letting you focus on explaining your approach and demonstrating problem-solving skills rather than getting stuck on implementation details during high-pressure situations.
Ready to Get Started?
Download Interview Coder now and join thousands of developers who have aced their coding interviews