How to Solve Manhattan Distances of All Arrangements of Pieces Problem
Master the Manhattan Distances of All Arrangements of Pieces LeetCode problem with undetectable real-time assistance. Get instant solutions and explanations during your coding interviews.
Interview Coder generates complete solutions and debugging hints that you can use while explaining your approach, so you stay calm and in control.
Manhattan Distances of All Arrangements of Pieces
You are given three integers m, n, and k. There is a rectangular grid of size m × n containing k identical pieces. Return the sum of Manhattan distances between every pair of pieces over all valid arr...
Interview Coder will help you solve this problem in real-time during your interview
✨ Get instant solutions, explanations, and code generation
Understanding the Manhattan Distances of All Arrangements of Pieces Problem
Let's break down this LeetCode problem and understand what makes it challenging in interview settings.
Problem Statement
You are given three integers m, n, and k. There is a rectangular grid of size m × n containing k identical pieces. Return the sum of Manhattan distances between every pair of pieces over all valid arrangements of pieces. A valid arrangement is a placement of all k pieces on the grid with at most one piece per cell. Since the answer may be very large, return it modulo 109 + 7. The Manhattan Distance between two cells (xi, yi) and (xj, yj) is |xi - xj| + |yi - yj|.
Manhattan Distances of All Arrangements of Pieces
Related Topics
How Interview Coder Helps
Get real-time assistance for Manhattan Distances of All Arrangements of Pieces problems during coding interviews. Interview Coder provides instant solutions and explanations.
Examples
m = 2, n = 2, k = 2
8
The valid arrangements of pieces on the board are: In the first 4 arrangements, the Manhattan distance between the two pieces is 1. In the last 2 arrangements, the Manhattan distance between the two pieces is 2. Thus, the total Manhattan distance across all valid arrangements is 1 + 1 + 1 + 1 + 2 + 2 = 8.
m = 1, n = 4, k = 3
20
The valid arrangements of pieces on the board are: The first and last arrangements have a total Manhattan distance of 1 + 1 + 2 = 4. The middle two arrangements have a total Manhattan distance of 1 + 2 + 3 = 6. The total Manhattan distance between all pairs of pieces across all arrangements is 4 + 6 + 6 + 4 = 20.
Constraints
1 <= m, n <= 105
2 <= m * n <= 105
2 <= k <= m * n
How Interview Coder Helps with Leetcode Problems
Trust anchors reduce friction for conversion. Reinforce undetectability claims, platform compatibility, user counts, and the free trial to remove perceived risk.
See Interview Coder in Action
Watch how Interview Coder helps solve LeetCode problems during live interviews
Undetectability Checklist
Platform Compatibility
User results and traction
More than 87,000 developers use Interview Coder and early launch metrics showed rapid adoption. Social proof signals that this approach helps real candidates land offers across a range of companies.
Undetectability and technical details
Our native desktop architecture avoids common detection vectors used by browser extensions. We provide a clear checklist so you can run basic checks and confirm the app will be invisible during live interviews.
Platform compatibility and limitations
We work with Zoom, HackerRank, CodeSignal, CoderPad and other web based platforms, with a known list of app version caveats. Check the compatibility note and request a browser link if a specific desktop app is unsupported.
Frequently Asked Questions
Common questions about solving Manhattan Distances of All Arrangements of Pieces and using Interview Coder during coding interviews.
Interview Coder generates complete solutions instantly with proper complexity analysis, letting you focus on explaining your approach and demonstrating problem-solving skills rather than getting stuck on implementation details during high-pressure situations.
Ready to Get Started?
Download Interview Coder now and join thousands of developers who have aced their coding interviews