How to Solve Minimum Number of Operations to Make String Sorted Problem
Master the Minimum Number of Operations to Make String Sorted LeetCode problem with undetectable real-time assistance. Get instant solutions and explanations during your coding interviews.
Interview Coder generates complete solutions and debugging hints that you can use while explaining your approach, so you stay calm and in control.
Minimum Number of Operations to Make String Sorted
You are given a string s (0-indexed). You are asked to perform the following operation on s until you get a sorted string: Find the largest index i such that 1 <= i < s.length and s[i] < s...
Interview Coder will help you solve this problem in real-time during your interview
✨ Get instant solutions, explanations, and code generation
Understanding the Minimum Number of Operations to Make String Sorted Problem
Let's break down this LeetCode problem and understand what makes it challenging in interview settings.
Problem Statement
You are given a string s (0-indexed). You are asked to perform the following operation on s until you get a sorted string: Find the largest index i such that 1 <= i < s.length and s[i] < s[i - 1]. Find the largest index j such that i <= j < s.length and s[k] < s[i - 1] for all the possible values of k in the range [i, j] inclusive. Swap the two characters at indices i - 1 and j. Reverse the suffix starting at index i. Return the number of operations needed to make the string sorted. Since the answer can be too large, return it modulo 109 + 7.
Minimum Number of Operations to Make String Sorted
Related Topics
How Interview Coder Helps
Get real-time assistance for Minimum Number of Operations to Make String Sorted problems during coding interviews. Interview Coder provides instant solutions and explanations.
Examples
s = "cba"
5
The simulation goes as follows: Operation 1: i=2, j=2. Swap s[1] and s[2] to get s="cab", then reverse the suffix starting at 2. Now, s="cab". Operation 2: i=1, j=2. Swap s[0] and s[2] to get s="bac", then reverse the suffix starting at 1. Now, s="bca". Operation 3: i=2, j=2. Swap s[1] and s[2] to get s="bac", then reverse the suffix starting at 2. Now, s="bac". Operation 4: i=1, j=1. Swap s[0] and s[1] to get s="abc", then reverse the suffix starting at 1. Now, s="acb". Operation 5: i=2, j=2. Swap s[1] and s[2] to get s="abc", then reverse the suffix starting at 2. Now, s="abc".
s = "aabaa"
2
The simulation goes as follows: Operation 1: i=3, j=4. Swap s[2] and s[4] to get s="aaaab", then reverse the substring starting at 3. Now, s="aaaba". Operation 2: i=4, j=4. Swap s[3] and s[4] to get s="aaaab", then reverse the substring starting at 4. Now, s="aaaab".
Constraints
1 <= s.length <= 3000
s consists only of lowercase English letters.
How Interview Coder Helps with Leetcode Problems
Trust anchors reduce friction for conversion. Reinforce undetectability claims, platform compatibility, user counts, and the free trial to remove perceived risk.
See Interview Coder in Action
Watch how Interview Coder helps solve LeetCode problems during live interviews
Undetectability Checklist
Platform Compatibility
User results and traction
More than 87,000 developers use Interview Coder and early launch metrics showed rapid adoption. Social proof signals that this approach helps real candidates land offers across a range of companies.
Undetectability and technical details
Our native desktop architecture avoids common detection vectors used by browser extensions. We provide a clear checklist so you can run basic checks and confirm the app will be invisible during live interviews.
Platform compatibility and limitations
We work with Zoom, HackerRank, CodeSignal, CoderPad and other web based platforms, with a known list of app version caveats. Check the compatibility note and request a browser link if a specific desktop app is unsupported.
Frequently Asked Questions
Common questions about solving Minimum Number of Operations to Make String Sorted and using Interview Coder during coding interviews.
Interview Coder generates complete solutions instantly with proper complexity analysis, letting you focus on explaining your approach and demonstrating problem-solving skills rather than getting stuck on implementation details during high-pressure situations.
Ready to Get Started?
Download Interview Coder now and join thousands of developers who have aced their coding interviews