How to Solve Minimum Obstacle Removal to Reach Corner Problem
Master the Minimum Obstacle Removal to Reach Corner LeetCode problem with undetectable real-time assistance. Get instant solutions and explanations during your coding interviews.
Interview Coder generates complete solutions and debugging hints that you can use while explaining your approach, so you stay calm and in control.
Minimum Obstacle Removal to Reach Corner
You are given a 0-indexed 2D integer array grid of size m x n. Each cell has one of two values: 0 represents an empty cell, 1 represents an obstacle that may be removed. You can move up, down, left, o...
Interview Coder will help you solve this problem in real-time during your interview
✨ Get instant solutions, explanations, and code generation
Understanding the Minimum Obstacle Removal to Reach Corner Problem
Let's break down this LeetCode problem and understand what makes it challenging in interview settings.
Problem Statement
You are given a 0-indexed 2D integer array grid of size m x n. Each cell has one of two values: 0 represents an empty cell, 1 represents an obstacle that may be removed. You can move up, down, left, or right from and to an empty cell. Return the minimum number of obstacles to remove so you can move from the upper left corner (0, 0) to the lower right corner (m - 1, n - 1).
Minimum Obstacle Removal to Reach Corner
Related Topics
How Interview Coder Helps
Get real-time assistance for Minimum Obstacle Removal to Reach Corner problems during coding interviews. Interview Coder provides instant solutions and explanations.
Examples
grid = [[0,1,1],[1,1,0],[1,1,0]]
2
We can remove the obstacles at (0, 1) and (0, 2) to create a path from (0, 0) to (2, 2). It can be shown that we need to remove at least 2 obstacles, so we return 2. Note that there may be other ways to remove 2 obstacles to create a path.
grid = [[0,1,0,0,0],[0,1,0,1,0],[0,0,0,1,0]]
0
We can move from (0, 0) to (2, 4) without removing any obstacles, so we return 0.
Constraints
m == grid.length
n == grid[i].length
1 <= m, n <= 105
2 <= m * n <= 105
grid[i][j] is either 0 or 1.
grid[0][0] == grid[m - 1][n - 1] == 0
How Interview Coder Helps with Leetcode Problems
Trust anchors reduce friction for conversion. Reinforce undetectability claims, platform compatibility, user counts, and the free trial to remove perceived risk.
See Interview Coder in Action
Watch how Interview Coder helps solve LeetCode problems during live interviews
Undetectability Checklist
Platform Compatibility
User results and traction
More than 87,000 developers use Interview Coder and early launch metrics showed rapid adoption. Social proof signals that this approach helps real candidates land offers across a range of companies.
Undetectability and technical details
Our native desktop architecture avoids common detection vectors used by browser extensions. We provide a clear checklist so you can run basic checks and confirm the app will be invisible during live interviews.
Platform compatibility and limitations
We work with Zoom, HackerRank, CodeSignal, CoderPad and other web based platforms, with a known list of app version caveats. Check the compatibility note and request a browser link if a specific desktop app is unsupported.
Frequently Asked Questions
Common questions about solving Minimum Obstacle Removal to Reach Corner and using Interview Coder during coding interviews.
Interview Coder generates complete solutions instantly with proper complexity analysis, letting you focus on explaining your approach and demonstrating problem-solving skills rather than getting stuck on implementation details during high-pressure situations.
Ready to Get Started?
Download Interview Coder now and join thousands of developers who have aced their coding interviews